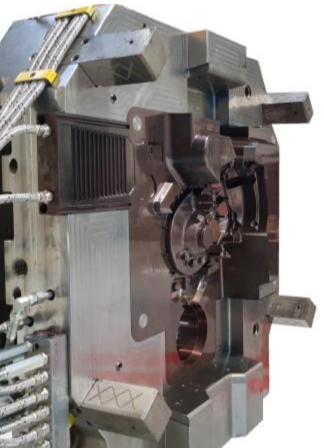


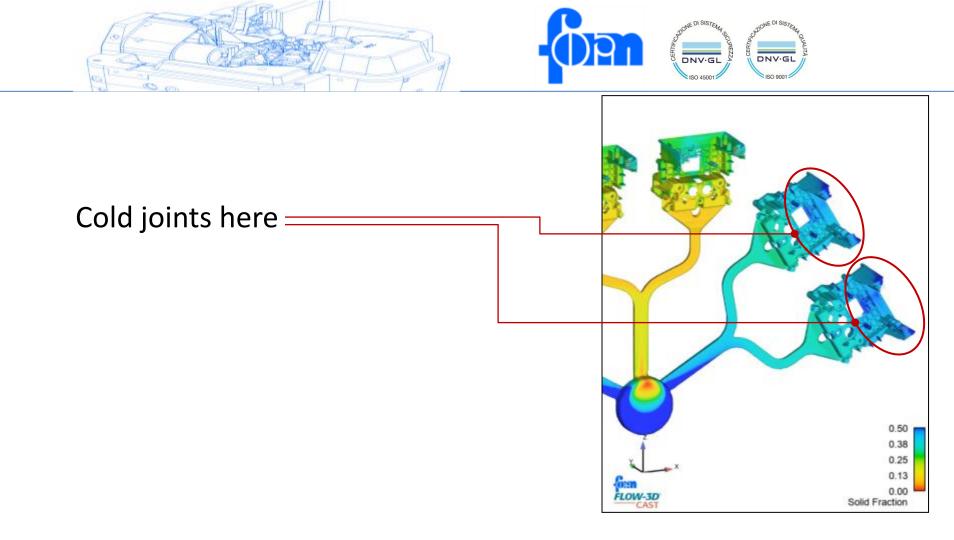
FLOW-3D European Users Conference 2019, Milan 3-5 June

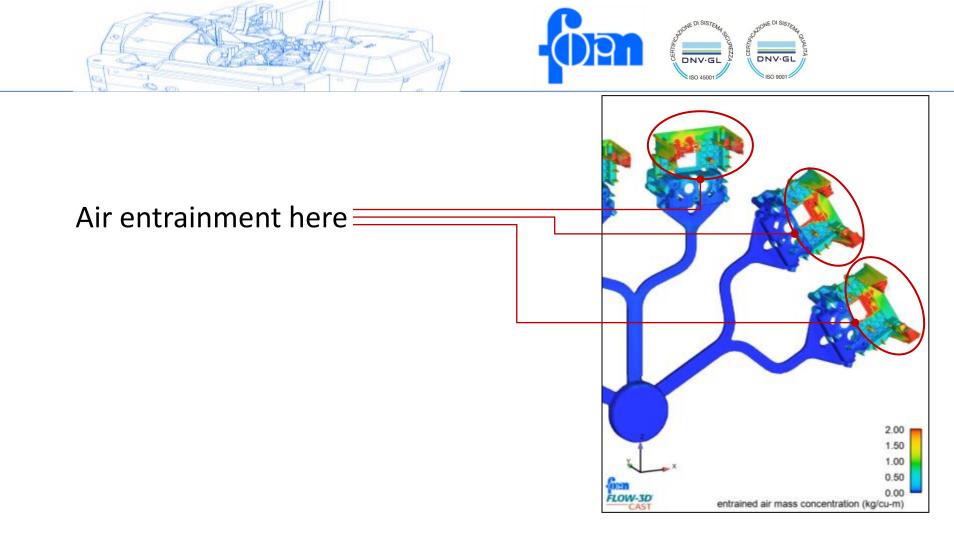

Casting die optimization by mean of IMPROVEit

Daniele Grassivaro – <u>daniele.grassivaro@formstampi.it</u> Form Srl – <u>www.formstampi.it</u>

Form Srl in short:

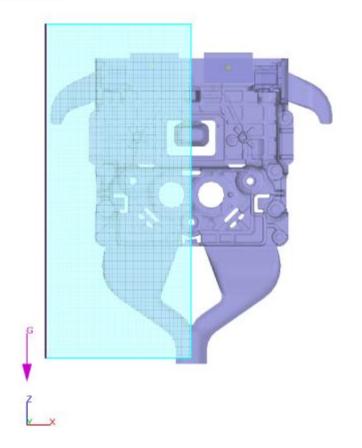
- HPDC dies
- Since 1980
- 35 employees
- 4.4 M€ turnover
 - 3500t max machine size
 Flow3D-CAST
 - user since 2012


Magnesium thin walled-casting Optimization of gate design


Overall dimensions 120x120x100mm

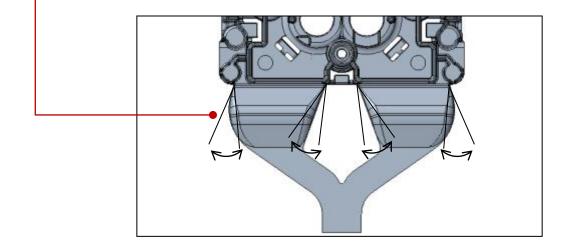
General thickness 1.5mr

6 cavities die



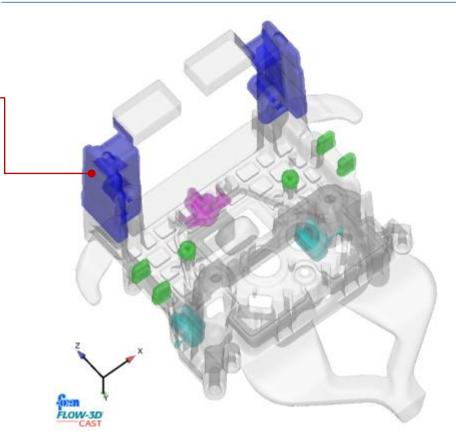
Simulation setup:

- Symmetry plane X=0
- Nr.2 venting valve
- Volume flow rate boundary in Zmin
- Size of cells 0.6mm
- Nr. 424k Fluid sub-domain cells
- -Duration: 1h 55 min
- -Budget: 14 simulations

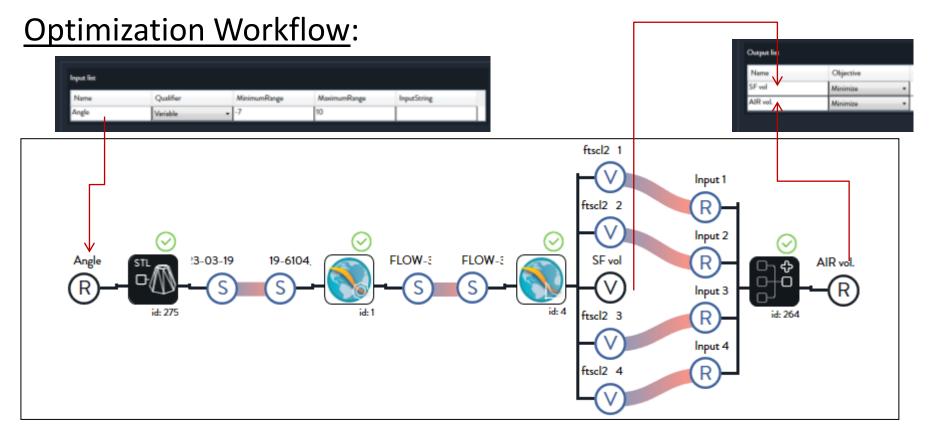


Optimization Input:

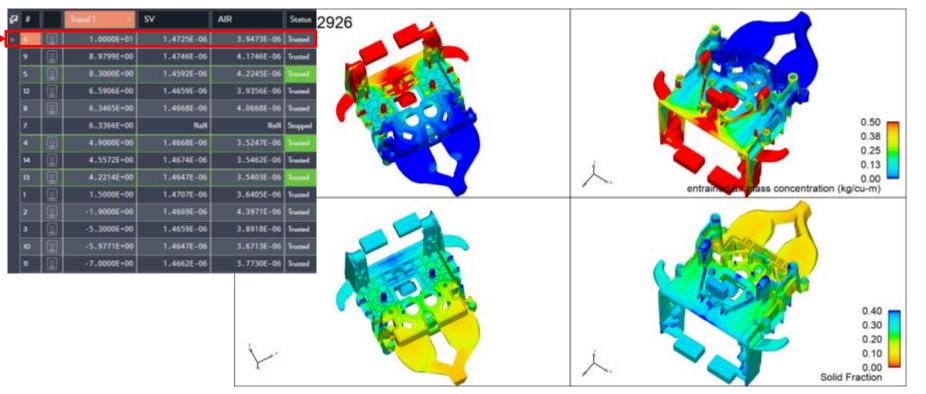
Gate angle

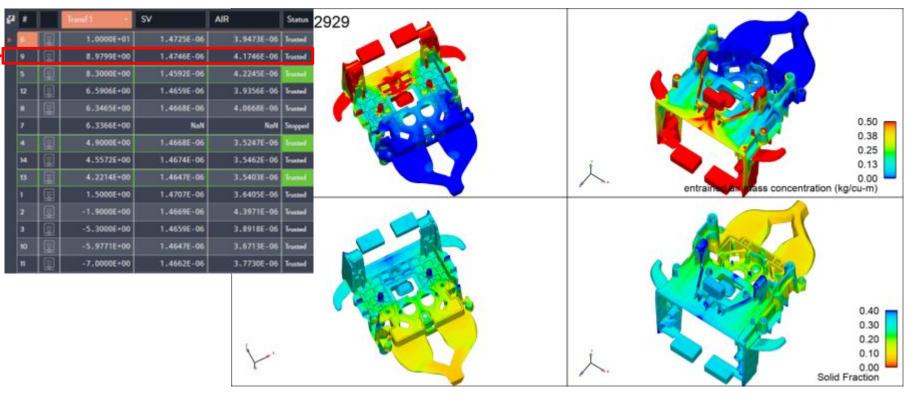


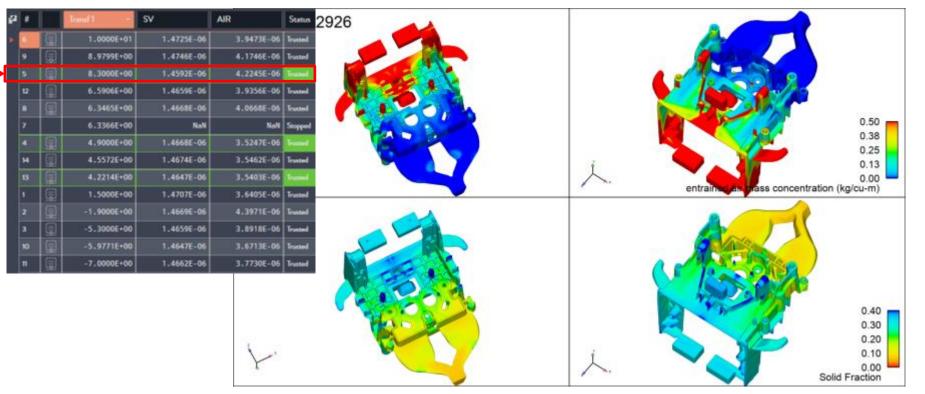
Optimization Output:

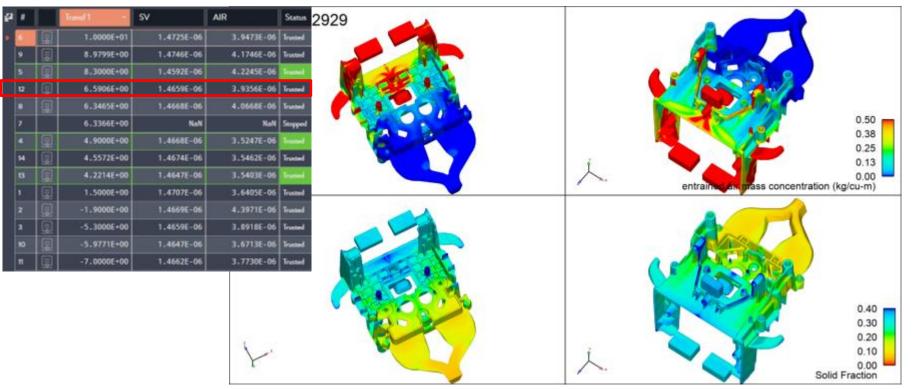

Into blue sampling volume: -Solidified fraction volume

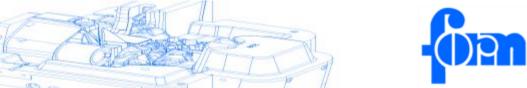
Into all sampling volume: -Entrained air mass

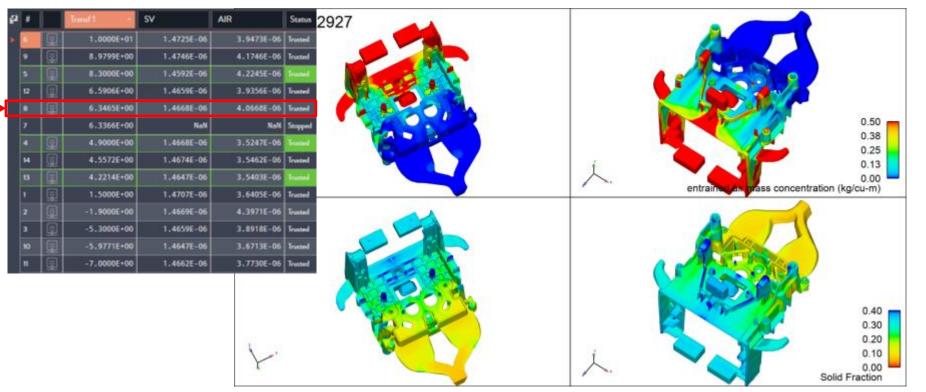


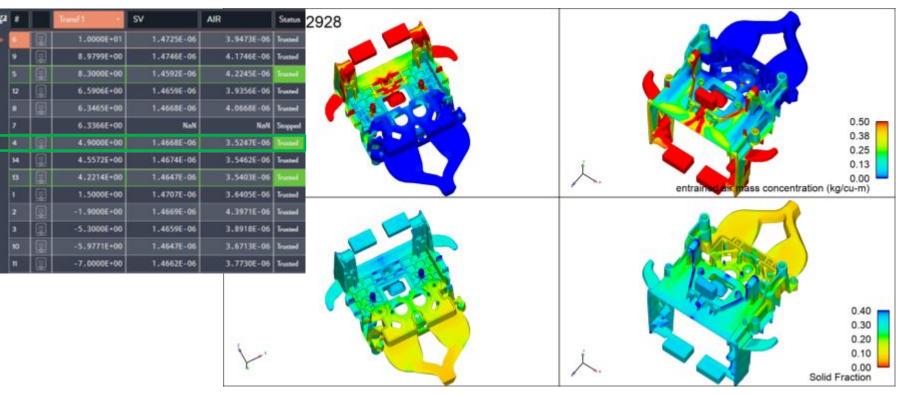






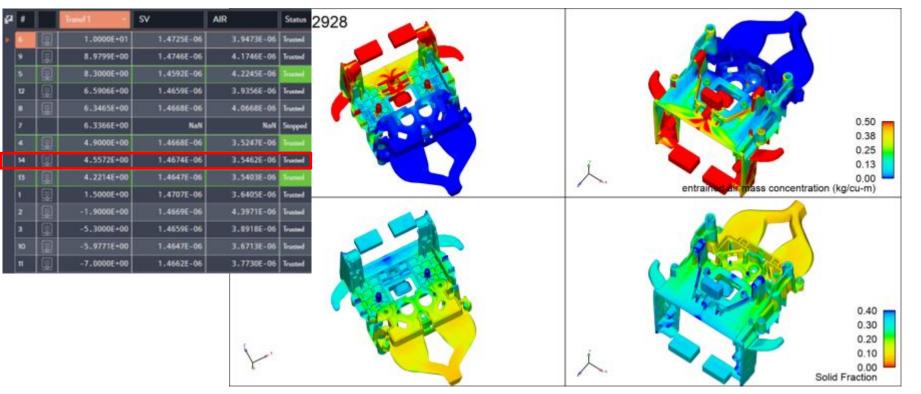






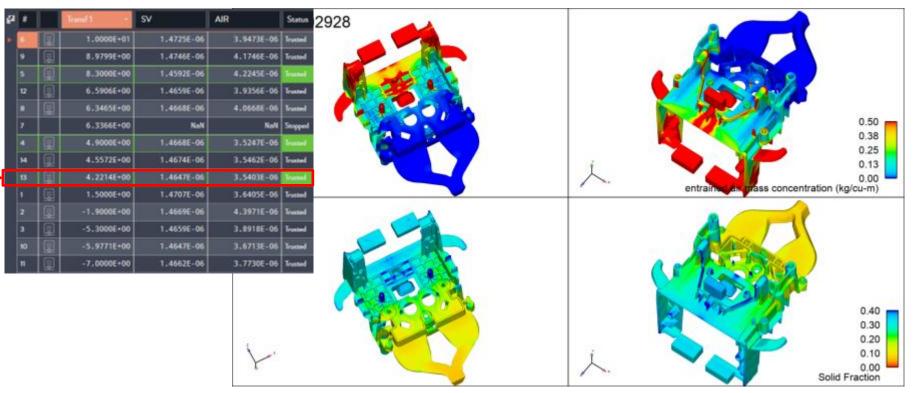
NE DI SISTER

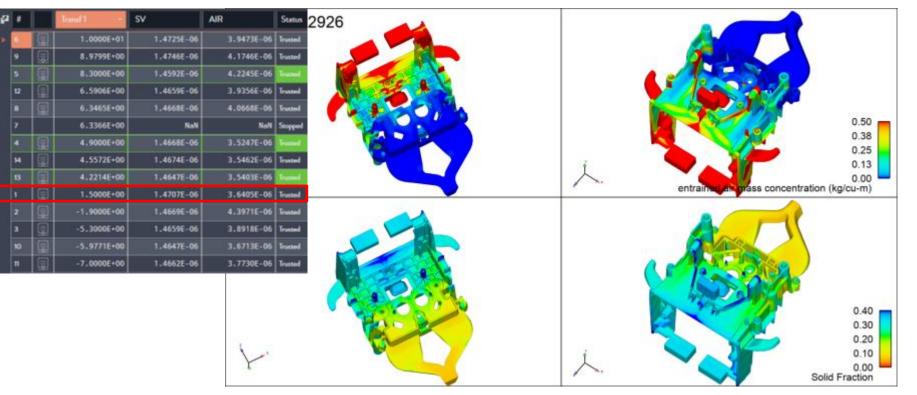
ISO 45001


NE DI SISTA

DNV.GL

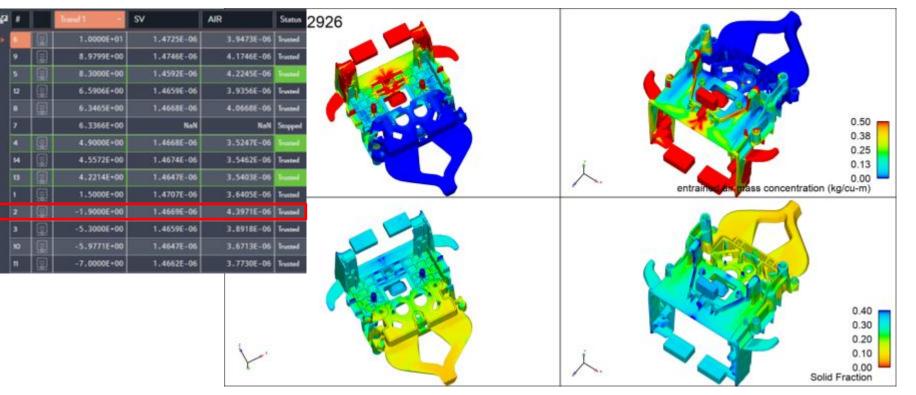
ISO 9001

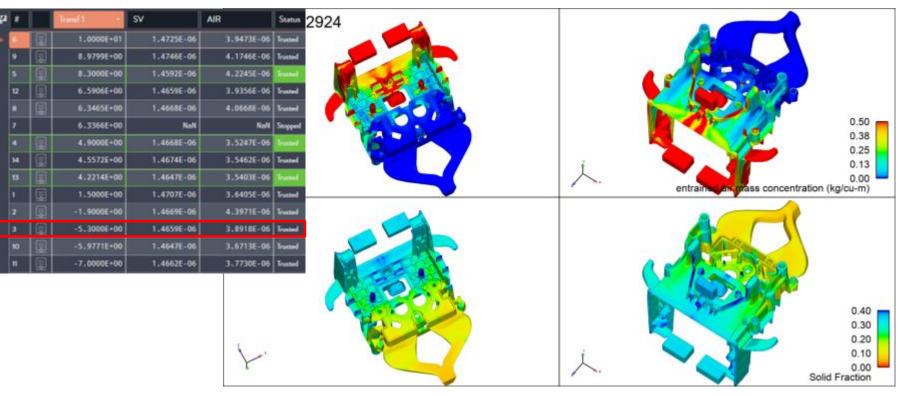




NE DI SISTA

DNV.GL


ISO 9001


NE DI SISTA

DNV.GL

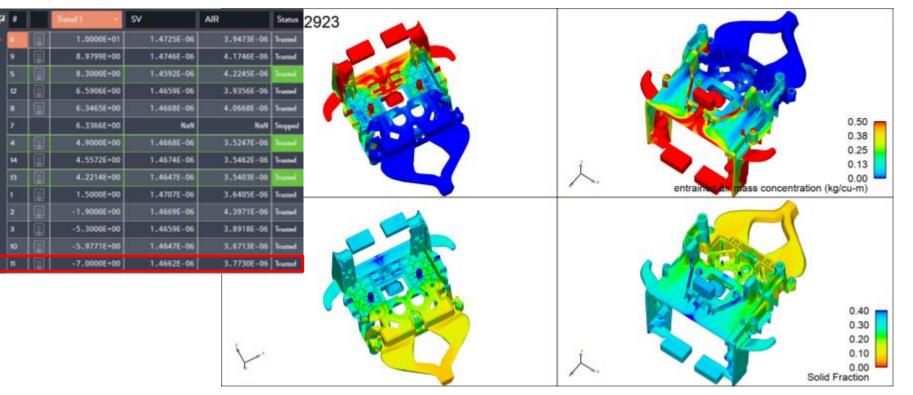
ISO 9001

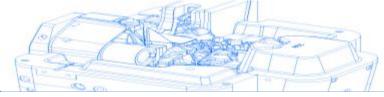
NE DI SISTA

DNV.GL

ISO 9001

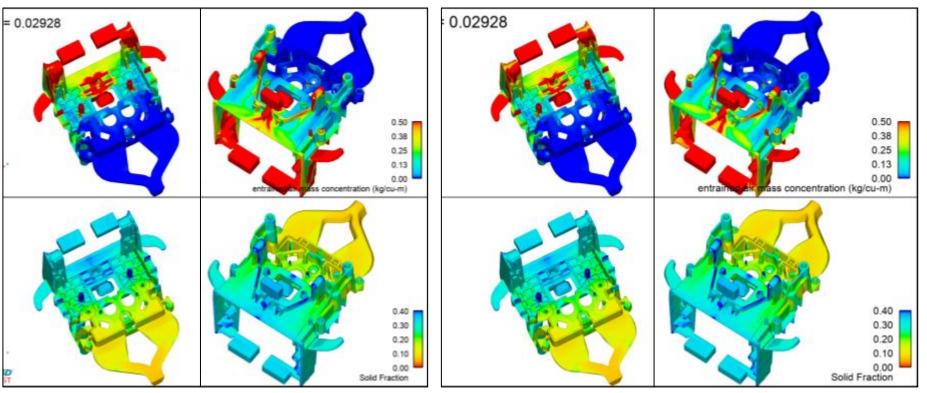
NE DI SIO


DNV-GL

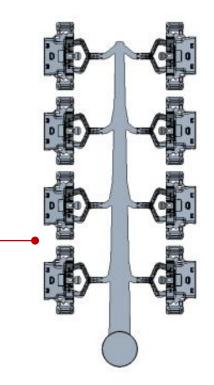

a #		Trand 1 -	sv	AIR	Status	2923
	圓	1.0000E+01	1.4725E-06	3.9473E-06	Trusted	
9	Q	8.9799E+00	1.4746E-06	4.1746E-06	Trusted	
5	9	8.3000E+00	1.4592E-06	4.2245E-06	Inunel	
12	9	6.5906E+00	1.4659E-06	3.9356E-06	Trusted	
		6.3465E+00	1.4668E-06	4.0668E-06	Trusted	
7		6.3366E+00	NaN	NeN	Stopped	
	圓	4.9000E+00	1.4668E-06	3.5247E-06	Tranted	0.38
14	9	4.5572E+00	1.4674E-06	3.5462E-06	Trusted	0.13
			1.4647E-06	3.5403E-06	Instead	
		1.5000E+00	1.4707E-06	3.6405E-06	Trusted	entrained an trass concentration (kg/cu-m)
		-1.9000E+00	1.4669E-06	4.3971E-06	Trusted	
3		-5.3000E+00	1.4659E-06	3.8918E-06		
10		-5.9771E+00				
Π		-7.0000E+00	1.4662E-06	3.7730E-06	Trusted	0.40 0.30 0.20 0.10 0.10 0.10 0.10

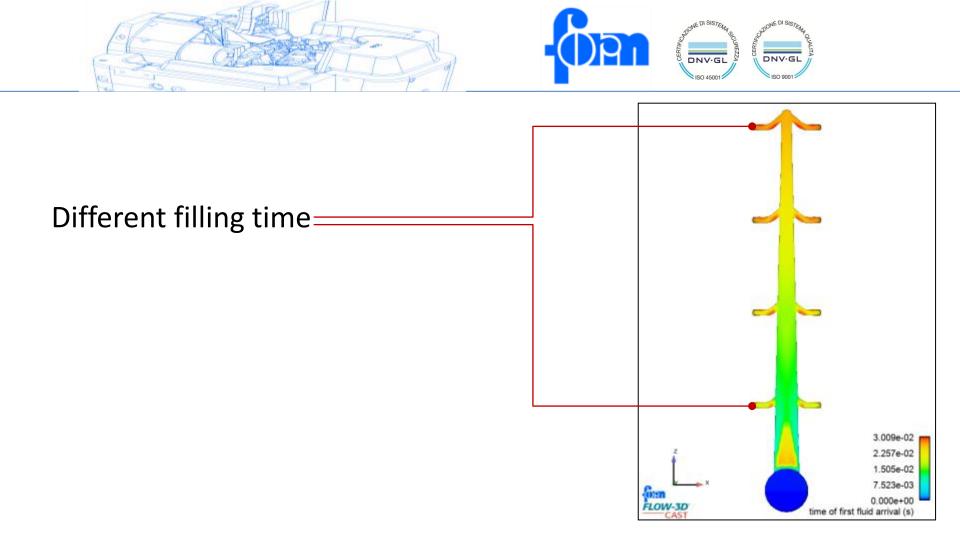
NE DI SISTA

ISO 9001



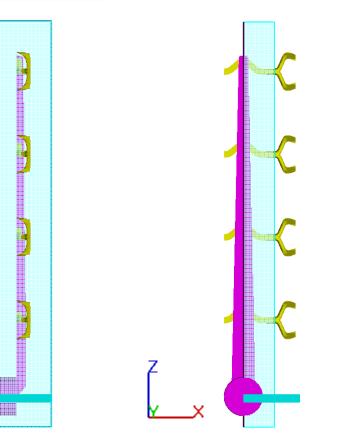
Initial Result:

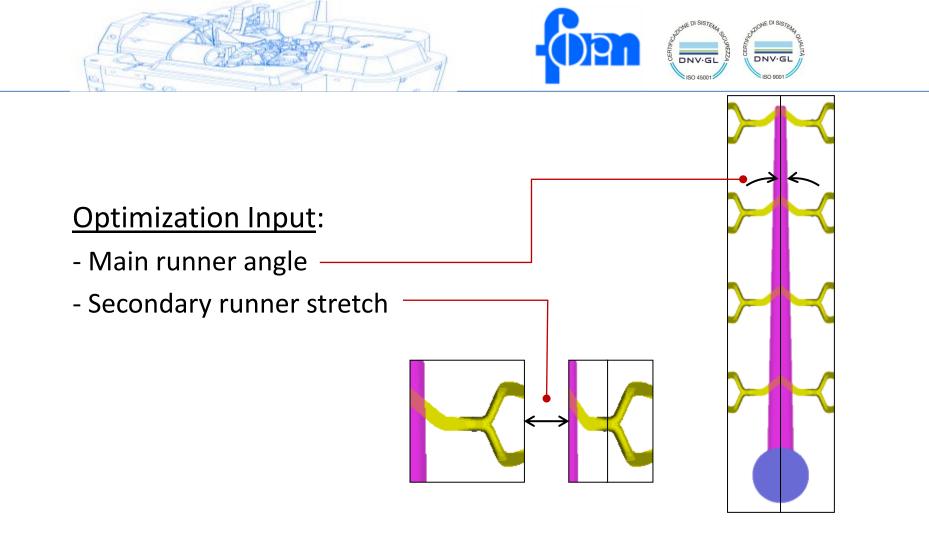

Optimized Result:

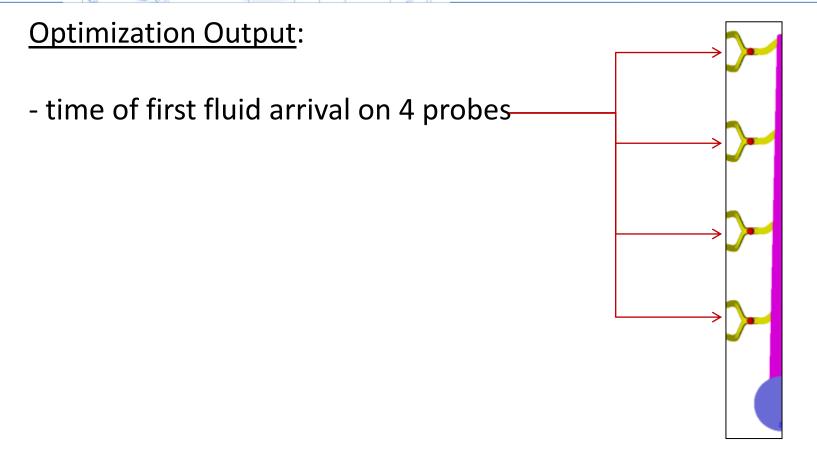


Magnesium thin walled-casting Optimization of runner design

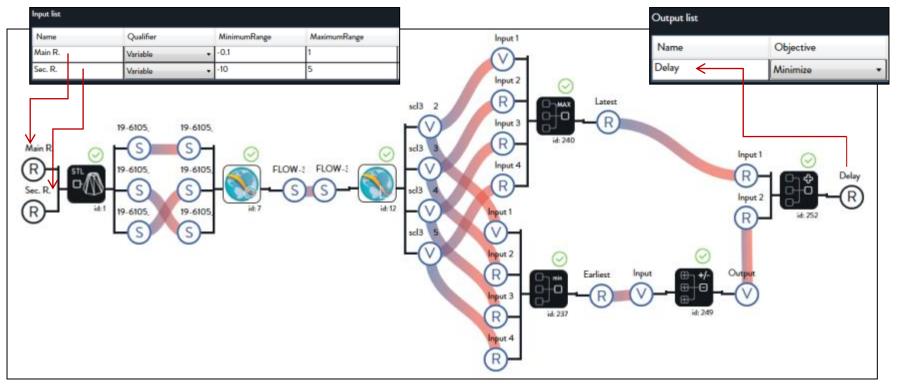
Overall dimensions 80x60x40mm General thickness 1.9mm 8 cavities die

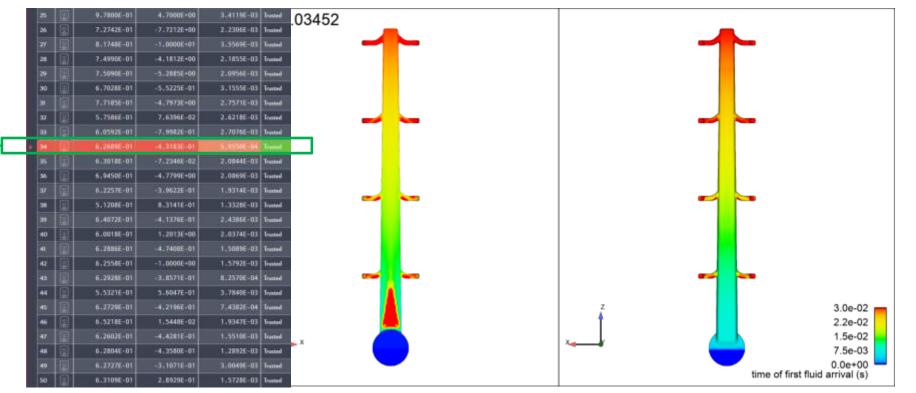





Simulation setup:

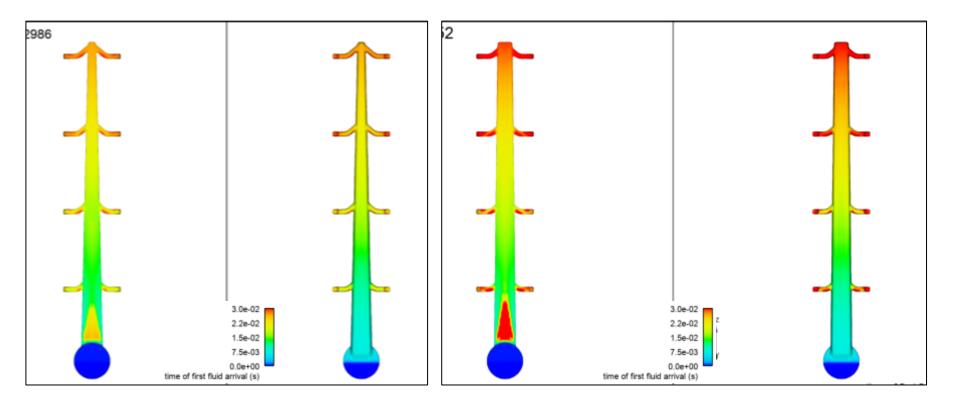
- Symmetry plane X=0
- Outflow boundary in Xmax
- Metal velocity boundary in Ymin
- Size of cells 2mm
- Nr. 34k Fluid sub-domain cells
- Duration: 3 min
- Budget: 50 simulations





Optimization Workflow:

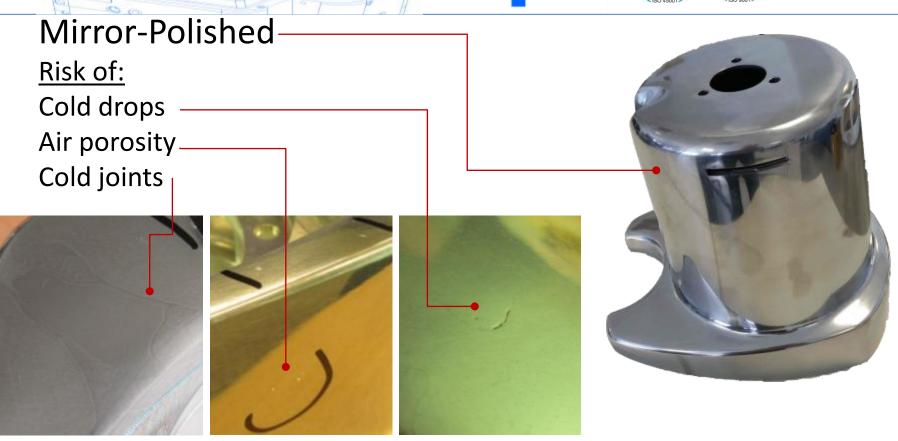
NE DI SIST


DNV.GL

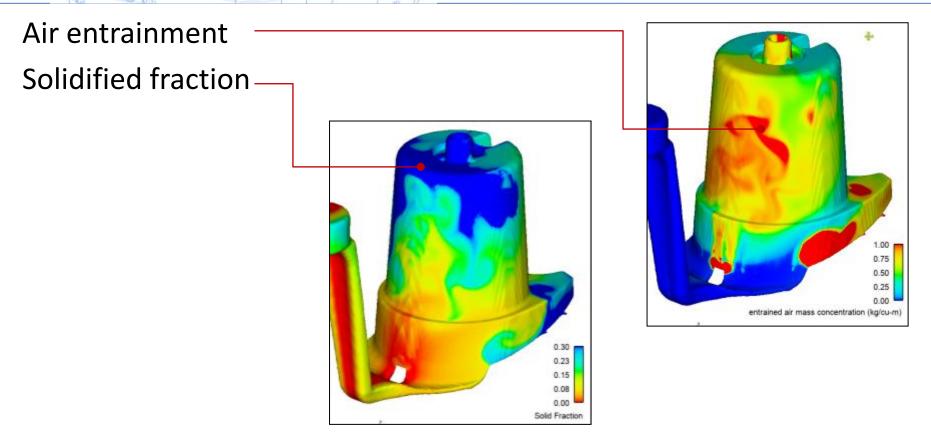
ISO 9001

Initial Result:

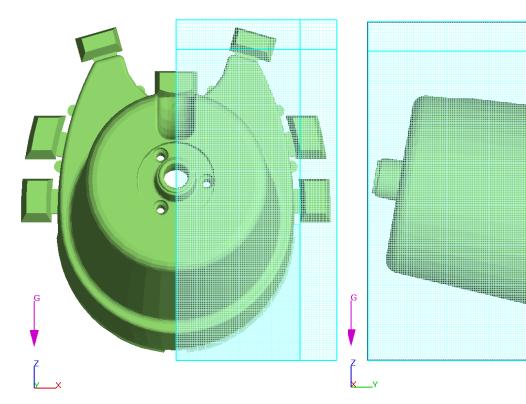
Optimized Result:


Aluminum casting Optimization of gate design

Application: professional squeezer base



DIV-GL



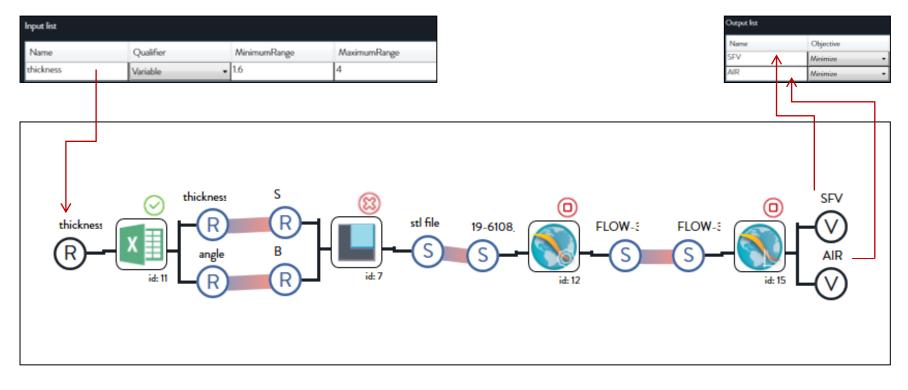
<u>Simulation</u>

<u>setup</u>:

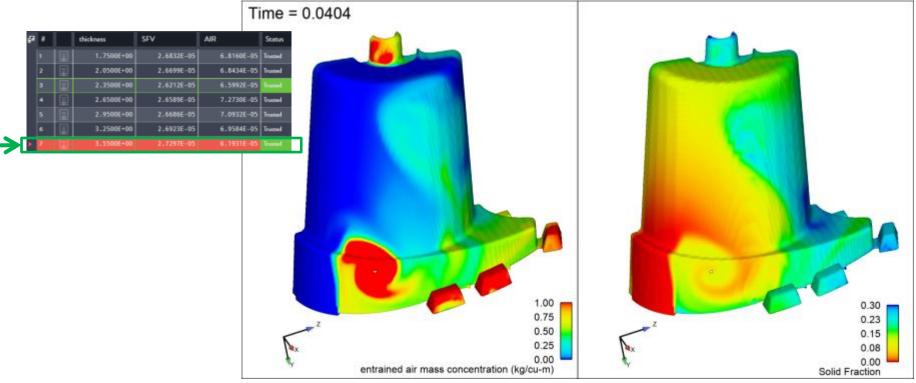
- Symmetry plane X=0
- Metal velocity boundary in Ymin
- Size of cells
 Main block 1.5mm
 Block at gates 0.75mm
- Nr. 238 k Fluid subdomain cells
- Duration: 1h 15 min
- Budget: 7 simulations

Optimization Input: - Gate thickness (1.6 ÷ 4mm) Constraint: - constant gate section = 450mm² \rightarrow change of gate length from 40° to 90°.

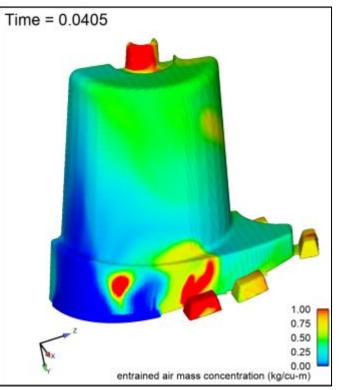
Optimization Output:

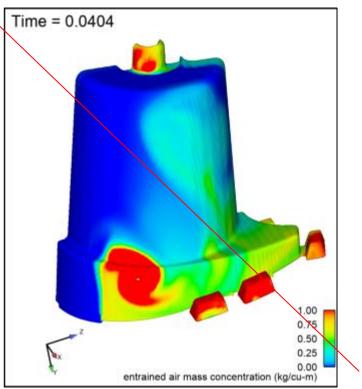

Into sampling volume "skin":

- Entrained air mass
- Solidified fraction volume

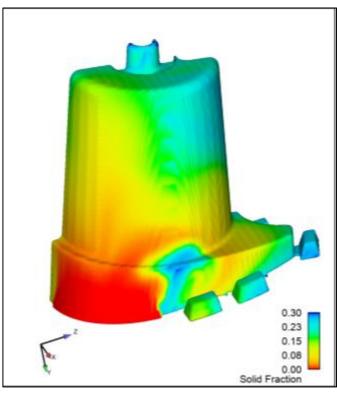


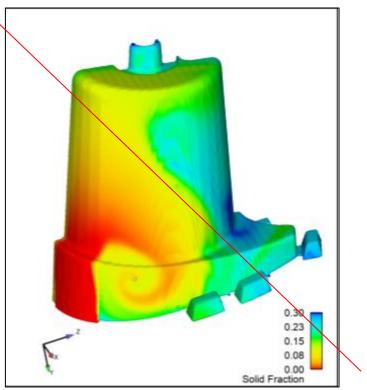
Optimization Workflow:

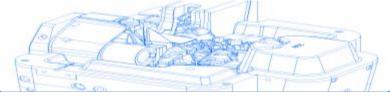

Optimization Results:



Our choice:

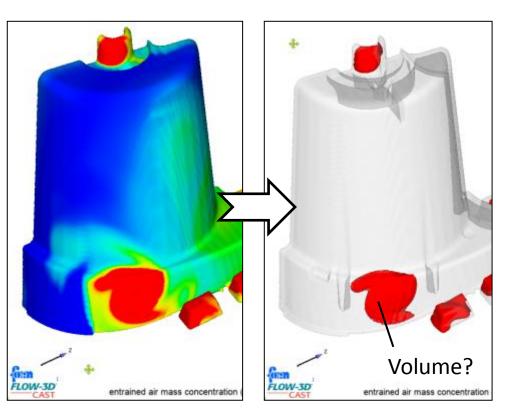

Optimized Result:





Our choice:

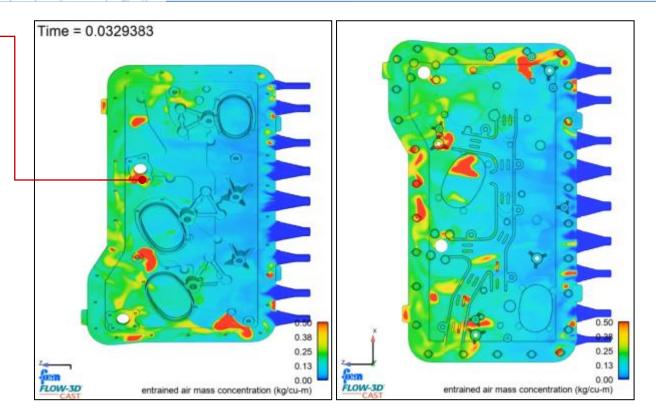
Optimized Result:



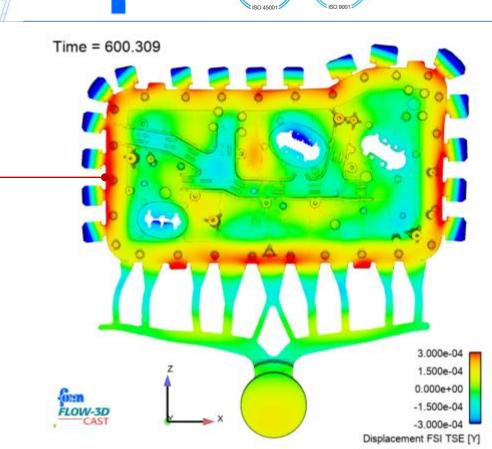
Idea to improve Optimization:

To implement into IMPROVEit a new node using Flowsight post processing to calculate the volume of the isosurface with

Entrained air mass conc. > 1



<u>Aluminum vacuum casting</u> <u>Optimization of die design</u>



Air entrainment

Deformation

NE DI SISTEM

DNV.GL

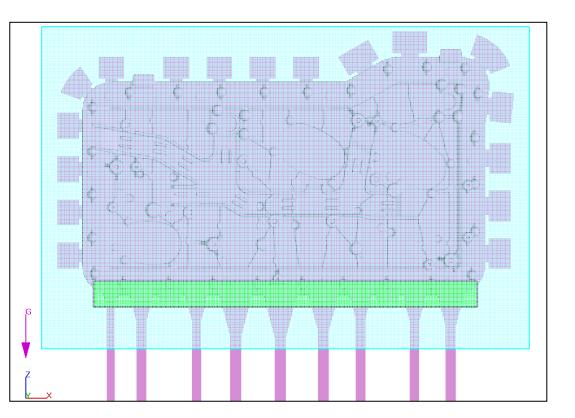
CEH

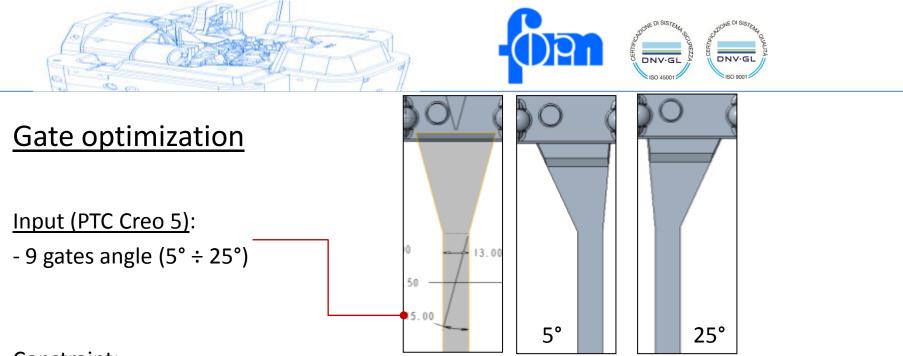
5

NE DI SIST

DNV.GL

Gate optimization

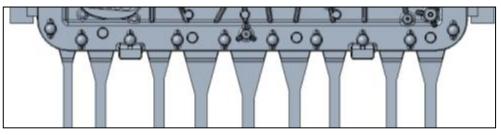

Simulation setup:


-Metal velocity boundary in Zmin

- Size of cells

Main block 1.5mmBlock at gates 1mm

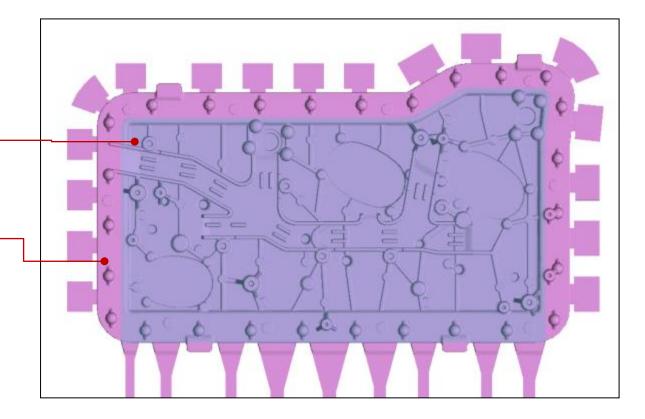
- Nr. 632 k Fluid sub-domain cells
- Duration: 1h 40 min
- Budget: 20 simulations



Constraint:

-Gates position

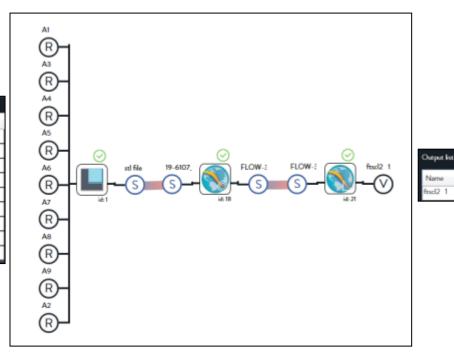
- constant gates total section = 680mm²



Gate optimization

<u>Output</u>:

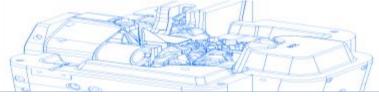
Into sampling volume: -Entrained air mass

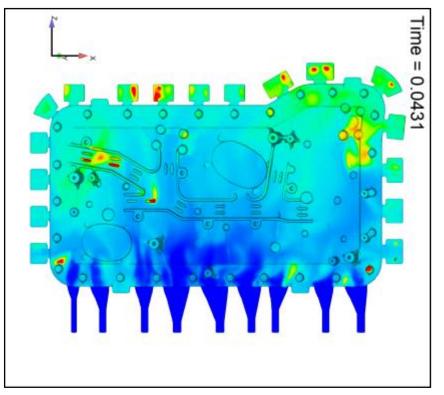

The external flange is out of the sampling volume because here we can easily remove air using overflows

Gate optimization Workflow:

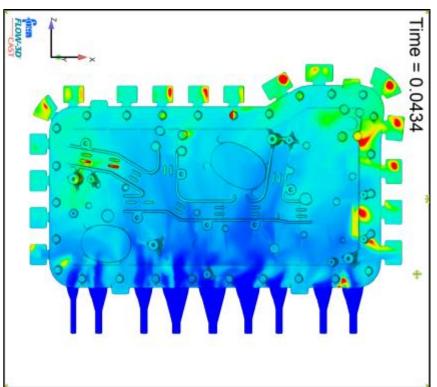
Input list				
Name	Qualifier		MinimumRange	MaximumRange
A1	Variable	-	5	25
A3	Variable		5	25
A4	Variable	•	5	25
AS	Variable		5	25
A6	Variable	•	5	25
A7	Variable	•	5	25
AS	Variable	•	5	25
A9	Variable		5	25
A2	Variable	•	5	25

Objective

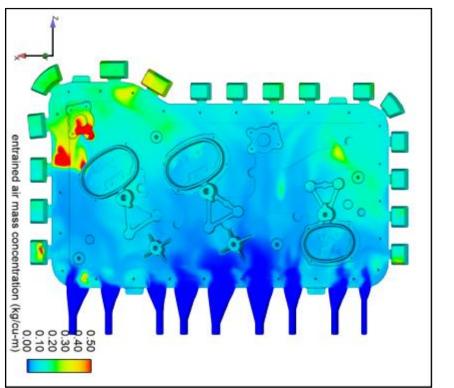

Minimize

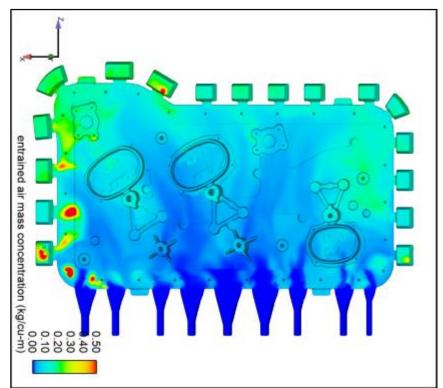

Gate optimization Results:

	# ~	A1	A3	A4	A5	A6	A7	A8	A9	A2	ftscl2 1	Status
Best Result 🔶	1										4.2414E-05	None
	2	1.3462E+01	1.1923E+01	1.9615E+01	1.8077E+01	5.7692E+00	7.3077E+00	1.1923E+01	1.1923E+01	2.2692E+01	4.7079E-05	Trusted
	3	1.6538E+01	1.3462E+01	1.0385E+01	2.1154E+01	2.2692E+01	8.8462E+00	7.3077E+00	8.8462E+00	7.3077E+00	4.7452E-05	Trusted
	4	3.8462E+00	8.8462E+00	2.1154E+01	8.8462E+00	1.1923E+01	2.4231E+01	1.6538E+01	1.0385E+01	1.0385E+01	4.5549E-05	Trusted
Worst Result ->	5	1.5000E+01	1.5000E+01	1.5000E+01	7.3077E+00	1.8077E+01	5.7692E+00	1.8077E+01	2.4231E+01	8.8462E+00	4.8779E-05	Trusted
	6	1.0385E+01	7.3077E+00	7.3077E+00	1.1923E+01	1.6538E+01	1.0385E+01	1.9615E+01	7.3077E+00	2.1154E+01	4.7436E-05	Trusted
	7	2.4231E+01	1.0385E+01	2.4231E+01	2.2692E+01	1.3462E+01	1.3462E+01	1.3462E+01	1.9615E+01	1.8077E+01	4.6547E-05	Trusted
	8	1.9615E+01	1.9615E+01	1.1923E+01	5.7692E+00	7.3077E+00	1.5000E+01	5.7692E+00	1.3462E+01	1.5000E+01	4.8554E-05	Trusted
	9	7.3077E+00	2.4231E+01	5.7692E+00	1.9615E+01	1.0385E+01	1.1923E+01	1.5000E+01	1.8077E+01	1.1923E+01	4.5968E-05	Trusted
	10	5.7692E+00	2.2692E+01	2.2692E+01	1.3462E+01	2.1154E+01	1.8077E+01	8.8462E+00	1.6538E+01	1.9615E+01	4.5548E-05	Trusted
	11	1.8077E+01	5.7692E+00	8.8462E+00	1.6538E+01	1.9615E+01	2.2692E+01	1.0385E+01	2.2692E+01	1.3462E+01	4.7013E-05	Trusted
	12	2.2692E+01	2.1154E+01	1.8077E+01	1.5000E+01	1.5000E+01	1.6538E+01	2.1154E+01	5.7692E+00	5.7692E+00	4.4601E-05	Trusted
	13	1.1923E+01	1.8077E+01	1.3462E+01	2.4231E+01	8.8462E+00	2.1154E+01	2.4231E+01	2.1154E+01	1.6538E+01	4.4635E-05	Trusted
	14	2.1154E+01	1.6538E+01	1.6538E+01	1.0385E+01	2.4231E+01	1.9615E+01	2.2692E+01	1.5000E+01	2.4231E+01	4.5342E-05	Trusted
	15	5.0000E+00	2.5000E+01	2.5000E+01	2.5000E+01	2.5000E+01	2.5000E+01	2.5000E+01	5.0000E+00	5.0000E+00	4.8366E-05	Trusted
	16	2.5000E+01	2.5000E+01	1.5784E+01	2.5000E+01	5.0000E+00	2.5000E+01	2.5000E+01	5.0000E+00	2.0858E+01	4.4133E-05	Trusted
	17	2.5000E+01	2.3703E+01	1.7823E+01	1.7317E+01	9.4442E+00	2.5000E+01	2.5000E+01	6.4449E+00	1.1399E+01	4.6230E-05	Trusted
	18	1.8715E+01	2.5000E+01	1.1300E+01	2.5000E+01	6.0536E+00	1.8008E+01	2.5000E+01	5.0000E+00	2.5000E+01	4.6218E-05	Trusted
	19	2.5000E+01	1.8192E+01	2.5000E+01	2.5000E+01	5.0000E+00	2.5000E+01	1.7630E+01	5.0000E+00	2.5000E+01	4.4449E-05	Trusted
	20	5.0000E+00	1.9619E+01	1.5856E+01	2.5000E+01	5.0000E+00	2.5000E+01	1.6428E+01	2.5000E+01	2.4916E+01	4.7862E-05	Trusted



Worst Result:

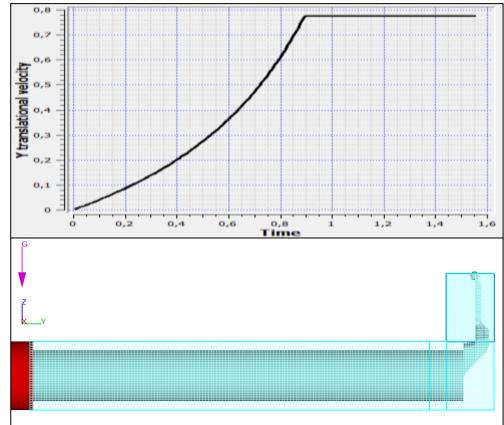

Best Result:





Worst Result:

Best Result:

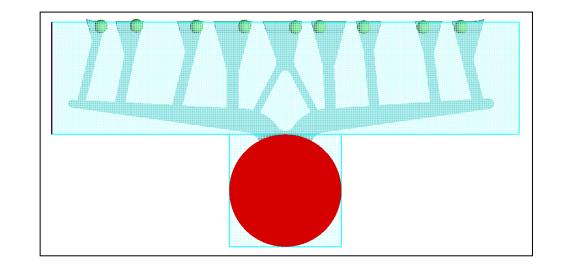

Runners optimization

1st phase simulation setup:

-Filling simulation of the chamber up to active simulation control probe

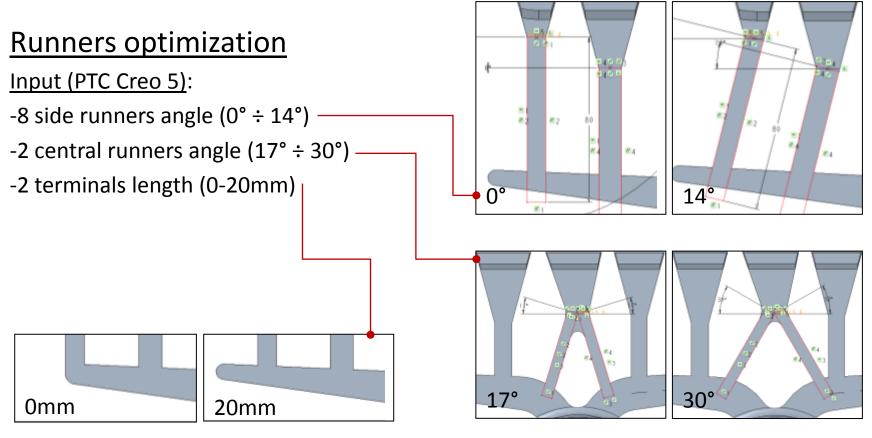
-Optimized slow shot plunger speed

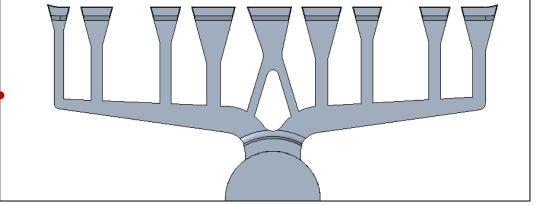
- Size of cells
 - •Shot sleeve 3x3x5mm
 - •Runner/gates 2mm
- Nr. 190 k Fluid sub-domain cells
- -Duration: 14 min

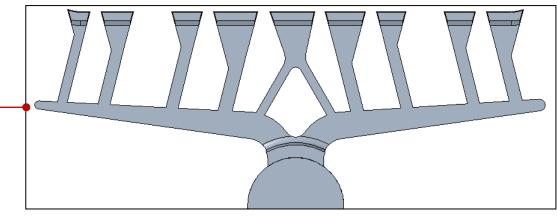


Runners optimization

2nd phase simulation setup:


- -Restart from 1st simulation
 -Acceleration of plunger speed to 3.5m/s in 0.02s
- Size of cells
 - •Shot sleeve 3x3x5mm
 - •Runner/gates 2mm
- Nr. 190 k Fluid sub-domain cells
- Duration: 6 min
- Budget: 20 simulations

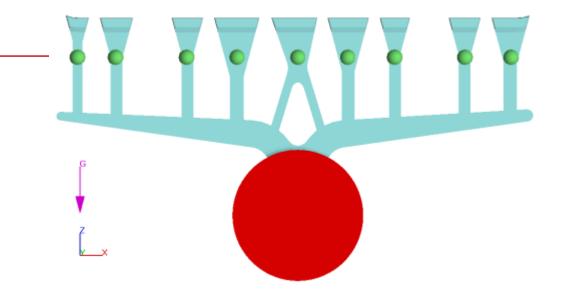



Minimum Range:

- -8 side runners angle 0°
- -2 central runners angle 17°
- -2 terminals length 20mm

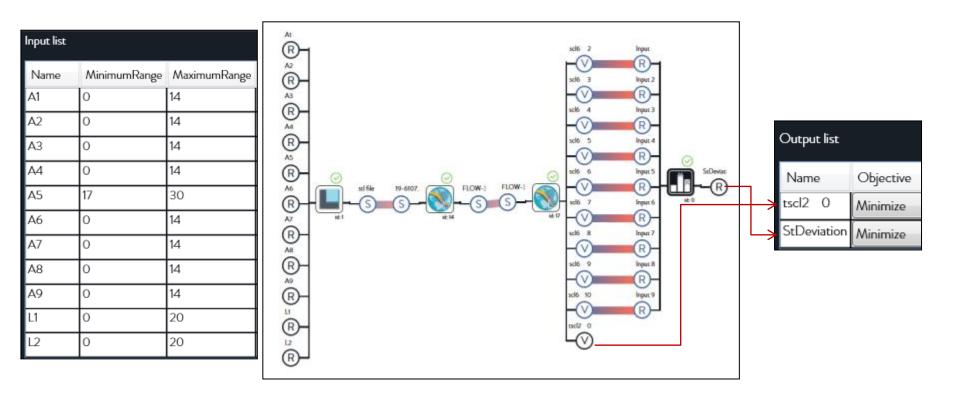
Maximum Range:

- -8 side runners angle 14°
- -2 central runners angle 30°
- -2 terminals length 20mm



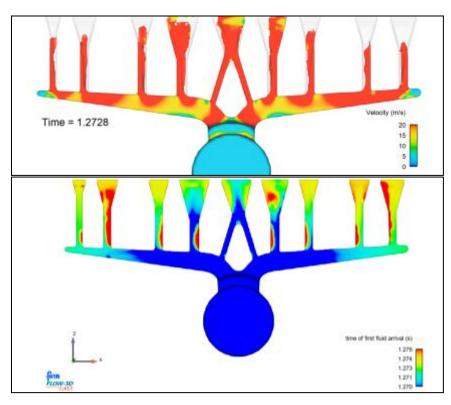
Runners optimization

<u>Output</u>:

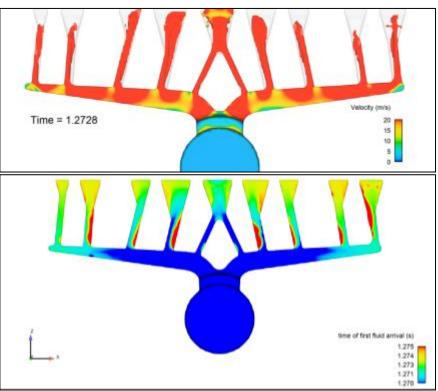

- time of first fluid arrival on 9 probes

- entrained air mass conc.

Runners optimization Workflow:

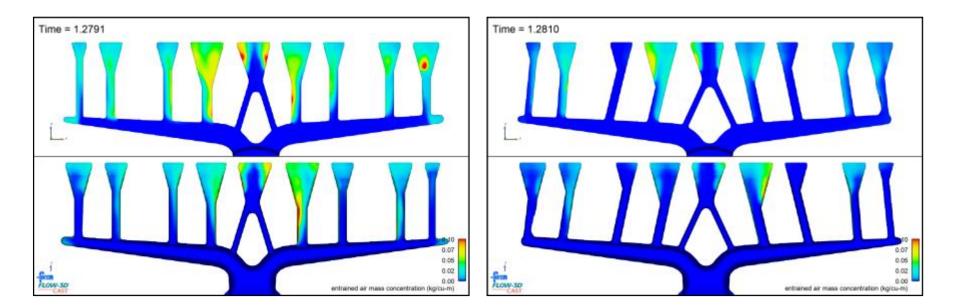

Runners optimization Results:

# A1 A2	A3	A4	A5	A6	A7	A8	A9	Ľ	L2	tscl2 0	StDeviatio	Status
1 🗒 1.0500E+01 3.5000E+00 9	9.1000E+00	7.0000E-01	1.7650E+01	9.1000E+00	6.3000E+00	7.0000E-01	9.1000E+00	1.3000E+01	5.0000E+00	5.3294E-06	9.9662E-04	Trusted
Pareto front	+01	9.1000E+00	1.8950E+01	2.1000E+00	1.0500E+01	4.9000E+00	3.5000E+00	1.5000E+01	1.7000E+01	5.0305E-06	1.1003E-03	Trusted
0.0022	+00	6.3000E+00	2.1550E+01	4.9000E+00	3.5000E+00	7.7000E+00	1.1900E+01	1.0000E+00	1.0000E+00	4.9971E-06	8.5706E-04	Trusted
	+00	7.7000E+00	2.4150E+01	7.0000E-01	2.1000E+00	1.3300E+01	4.9000E+00	1.7000E+01	7.0000E+00	4.7318E-06	9.9932E-04	Trusted
0.002	+00	1.1900E+01	2.2850E+01	1.0500E+01	9.1000E+00	6.3000E+00	1.3300E+01	1.9000E+01	1.1000E+01	4.8940E-06	1.1906E-03	Trusted
0.0015	+00	4.9000E+00	2.6750E+01	1.3300E+01	7.0000E-01	3.5000E+00	7.0000E-01	1.1000E+01	9.0000E+00	5.0786E-06	1.0575E-03	Trusted
	-01	2.1000E+00	2.0250E+01	7.7000E+00	1.3300E+01	1.1900E+01	2.1000E+00	5.0000E+00	1.3000E+01	4.6391E-06	1.0645E-03	Trusted
5.0016 s tzcl2 0, 5tDeviation Bay 38: (4,075E-06, 1430E-03)	+00	1.0500E+01	2.9350E+01	3.5000E+00	7.7000E+00	2.1000E+00	1.0500E+01	3.0000E+00	1.5000E+01	5.2704E-06	1.2032E-03	Trusted
0.0014	+01	3.5000E+00	2.8050E+01	6.3000E+00	4.9000E+00	1.0500E+01	7.7000E+00	9.0000E+00	1.9000E+01	5.1372E-06	1.2750E-03	Trusted
8	+01	1.3300E+01	2.5450E+01	1.1900E+01	1.1900E+01	9.1000E+00	6.3000E+00	7.0000E+00	3.0000E+00	4.3502E-06	8.2687E-04	Trusted
0.0012	+01	1.4000E+01	3.0000E+01	1.4000E+01	1.4000E+01	1.4000E+01	1.4000E+01	2.0000E+01	0.0000E+00	4.2129E-06	1.2187E-03	Trusted
0.001	+01	1.4000E+01	1.7000E+01	0.0000E+00	1.4000E+01	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	4.9749E-06	1.4007E-03	Trusted
0.0008	+01	1.4000E+01	1.7000E+01	1.4000E+01	0.0000E+00	1.4000E+01	1.4000E+01	0.0000E+00	2.0000E+01	4.0851E-06	1.3674E-03	Trusted
0.0009	+01	1.4000E+01	1.7000E+01	1.4000E+01	1.4000E+01	1.4000E+01	0.0000E+00	0.0000E+00	0.0000E+00	4.0200E-06	2.0712E-03	Trusted
0.0005 4.02E-06 4.03E-06 4.04E-06 4.05E-06 4.06E-06 4.07E-06 4.08E-06 4.09E-06 4.1E-06 4.11E-06 4.1	+01	1.2227E+01	2.9399E+01	9.8613E+00	6.2738E+00	3.5625E+00	7.9618E+00	1.1419E+01	2.5496E-01	4.4678E-06	1.3012E-03	Trusted
tad2 0	+00	6.4059E+00	2.2082E+01	8.2905E+00	9.9897E+00	1.1399E+01	1.1648E+01	3.2668E+00	3.8893E+00	4.3642E-06	1.3936E-03	Trusted
17 💭 5.4529E-01 3.9883E-01 1	1.3733E+01	1.3869E+01	1.7495E+01	1.3956E+01	1.3479E+01	1.3581E+01	3.7641E-01	7.4447E-01	6.5139E-01	4.2100E-06	1.3434E-03	Trusted
18 💭 3.8003E-02 7.6017E-01 1	1.3924E+01	1.3624E+01	1.7598E+01	1.3417E+01	1.3885E+01	1.3780E+01	7.4436E-01	4.5038E-01	9.0445E-03	4.0754E-06	1.4299E-03	Trusted
19 🔲 19.2031E-02 1.1118E+00 1	1.3196E+01	1.3444E+01	1.8042E+01	1.3050E+01	1.3399E+01	1.3873E+01	1.2561E+00	1.1847E-01	1.0460E+00	4.0886E-06	1.8639E-03	Trusted
Best Result -20 🗐 5.7400E+00 4.5873E+00 1	1.3695E+01	1.3351E+01	2.4979E+01	1.1971E+01	1.1862E+01	8.7092E+00	6.6660E+00	7.7886E+00	2.4221E+00	4.1137E-06	7.5330E-04	Trusted



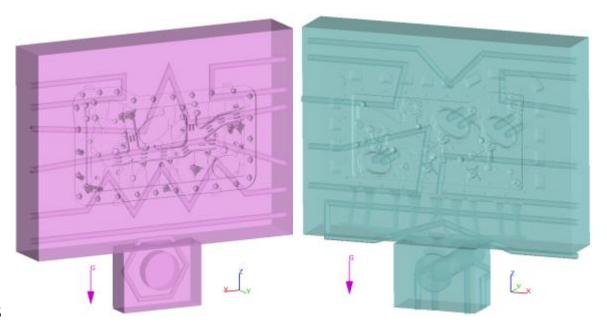
Initial Result:

Best Result:

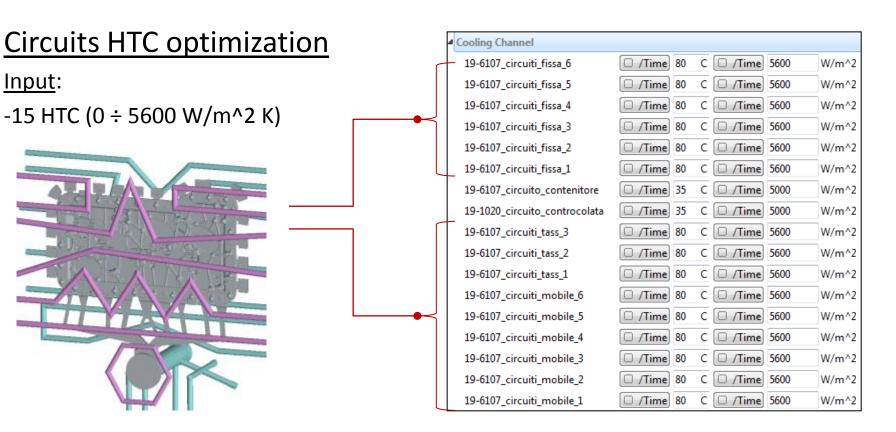


Initial Result:

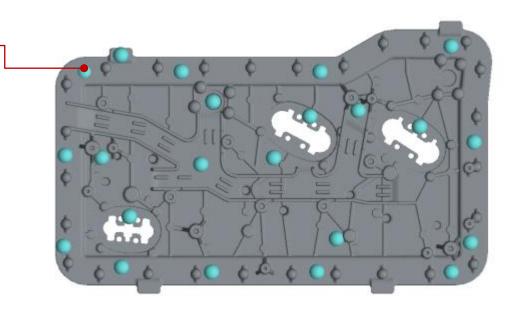
Best Result:



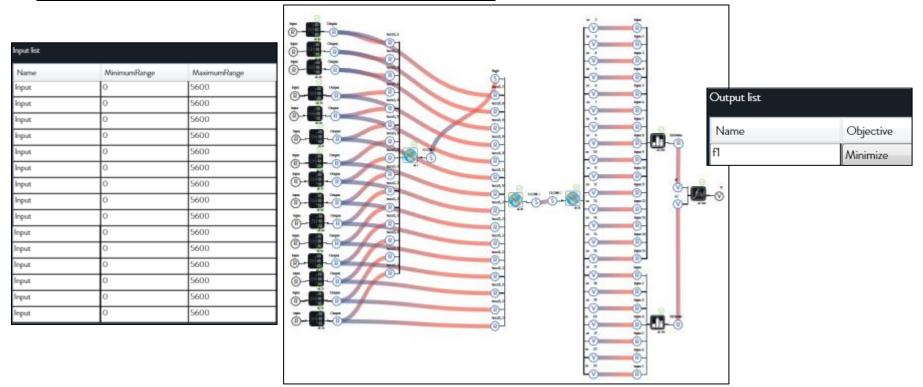
Cooling optimization

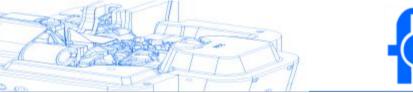

TDC simulation setup:

- All circuit in the cavity with the same temperature T=80°C but different flow (HTC)
- Nr.6 cycles starting from die at 200°C
- Restart from previous filling
- Size of cells 2mm
- Nr. 6.7M Solid sub-domain cells
- Duration: 55 min
- Budget: 24 simulations



Circuits HTC optimization

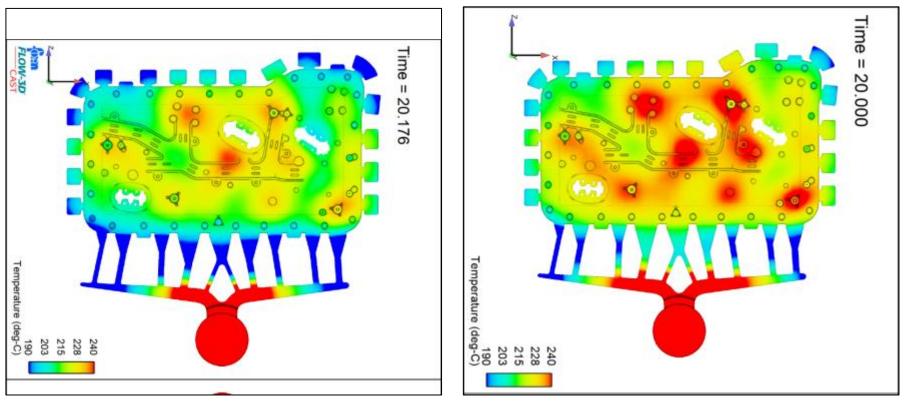

<u>Output</u>:


-22 probes to measure wall temperature

Circuits HTC optimization Workflow

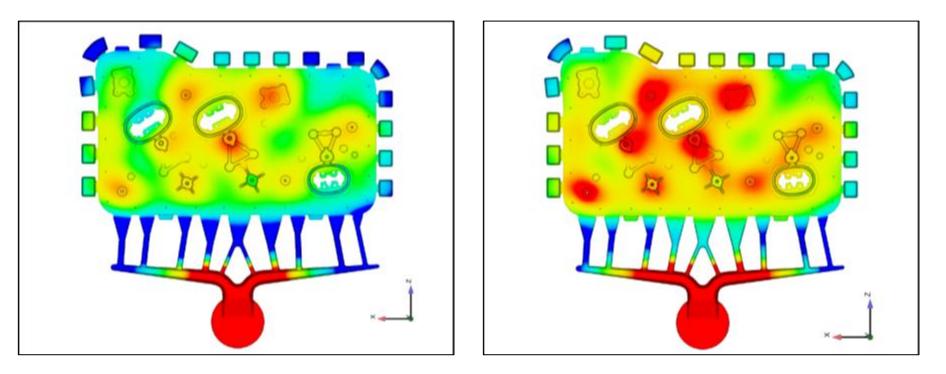
<u>Circuits HTC optimization results</u>:

Best Result


#		Input	fl	Status														
1		4.5920E+03	3.2480E+03	7.8400E+02	1.1200E+02	4.5920E+03	1.2320E+03	1.0080E+03	1.9040E+03	4.1440E+03	1.4560E+03	1.1200E+02	2.5760E+03	2.1280E+03	2.1280E+03	4.1440E+03	2.0576E+01	Trusted
2		2.8000E+03	3.9200E+03	1.9040E+03	1.0080E+03	5.6000E+02	4.5920E+03	1.1200E+02	2.1280E+03	3.6960E+03	3.4720E+03	3.6960E+03	1.1200E+02	4.3680E+03	1.0080E+03	1.2320E+03	1.5210E+01	Trusted
3	Ţ	1.6284E+03	1.7465E+03	4.6711E+03	1.6623E+03	1.6623E+03	1.3426E+03	5.4203E+03	5.2454E+03	5.2454E+03	2.0813E+03	3.5612E+03	3.5612E+03	2.0226E+03	1.9723E+03	1.8194E+03	1.2894E+01	Trusted
4	Ę	5.4699E+03	1.9633E+03	2.8572E+03	1.4223E+03	1.4223E+03	5.1473E+03	6.1313E+02	3.0170E+03	3.0170E+03	1.6467E+03	1.0875E+03	1.0875E+03	4.0849E+03	5.7520E+02	3.6676E+03	1.4275E+01	Trusted
5	Ę	2.3901E+03	1.1526E+02	2.9692E+03	3.7671E+03	3.7671E+03	1.9514E+03	2.8427E+03	3.2378E+03	3.2378E+03	1.8304E+03	4.6362E+03	4.6362E+03	4.8846E+03	2.5288E+03	7.8901E+02	1.1267E+01	Trusted
6	Ę	3.0016E+03	6.6040E+02	4.1577E+03	3.0216E+03	3.0216E+03	5.1893E+03	5.4582E+02	5.5787E+03	5.5787E+03	3.2943E+03	3.3388E+03	3.3388E+03	4.4160E+03	5.4299E+03	2.1910E+03	1.1236E+01	Trusted
7	Ę	1.5136E+03	3.8181E+03	3.5087E+03	1.4919E+03	1.4919E+03	2.1347E+03	5.3412E+03	1.6120E+03	1.6120E+03	3.1699E+02	2.1570E+03	2.1570E+03	4.2595E+03	4.3779E+03	5.2157E+03	1.1919E+01	Trusted
8	Ţ	4.1806E+02	2.0491E+03	2.5447E+03	1.3929E+03	1.3929E+03	3.0896E+02	1.6141E+02	2.0268E+03	2.0268E+03	8.4955E+02	1.5384E+03	1.5384E+03	1.1251E+03	4.5751E+03	5.2033E+03	1.3949E+01	Trusted
9	Ę	5.3513E+03	4.2064E+03	1.3212E+02	1.9066E+03	1.9066E+03	4.4560E+03	4.2529E+03	1.8727E+02	1.8727E+02	1.2972E+03	2.7466E+03	2.7466E+03	4.5855E+03	1.0729E+03	4.0157E+03	1.5392E+01	Trusted
10	Ę	5.5401E+03	2.0708E+03	2.9712E+03	1.3128E+03	1.3128E+03	6.0212E+02	4.2359E+03	2.1386E+03	2.1386E+03	2.6483E+03	2.4789E+03	2.4789E+03	3.6721E+03	2.8753E+03	4.0458E+03	1.6149E+01	Trusted
11	Ţ	2.9408E+03	5.4146E+01	5.0478E+03	4.2249E+03	4.2249E+03	8.5454E+02	5.5809E+03	6.9040E+02	6.9040E+02	2.1418E+03	2.6612E+01	2.6612E+01	9.4703E+02	4.0830E+03	2.8618E+03	1.6828E+01	Trusted
12	Ţ	4.4352E+03	1.8337E+03	4.9586E+03	2.4653E+02	2.4653E+02	1.9077E+03	3.2356E+03	2.4579E+03	2.4579E+03	1.1430E+03	3.7115E+02	3.7115E+02	2.6739E+03	5.2022E+03	2.4715E+00	1.6941E+01	Trusted
13	Ţ	3.9202E+03	1.9919E+02	1.0748E+03	5.4229E+03	5.4229E+03	5.1979E+03	4.8023E+03	8.5405E+02	8.5405E+02	3.2100E+03	4.0306E+03	4.0306E+03	1.2495E+03	3.8668E+03	3.0836E+03	1.0607E+01	Trusted
14	Ţ	3.9280E+03	2.0831E+03	5.4833E+03	1.7674E+03	1.7674E+03	4.4278E+03	3.3396E+03	4.4551E+03	4.4551E+03	4.3272E+02	4.9330E+03	4.9330E+03	2.8837E+01	2.7801E+03	2.7546E+02	1.2334E+01	Trusted
15	Ţ	2.8524E+03	2.6966E+02	8.0565E+01	6.2883E+02	6.2883E+02	4.0055E+03	5.1423E+03	4.1927E+03	4.1927E+03	2.6323E+03	3.1375E+02	3.1375E+02	5.3197E+03	3.4117E+03	3.7487E+03	2.1376E+01	Trusted
16	Ţ	1.6565E+03	3.6893E+03	4.4934E+03	5.0699E+03	5.0699E+03	3.4909E+03	2.5650E+03	5.4587E+03	5.4587E+03	3.1882E+03	2.9918E+03	2.9918E+03	1.5428E+03	4.8753E+03	4.3882E+03	1.1412E+01	Trusted
17	Ţ	3.7134E+03	1.4325E+03	1.1360E+03	2.0489E+03	2.0489E+03	7.4956E+02	2.5988E+03	4.9396E+03	4.9396E+03	2.7772E+03	4.0664E+03	4.0664E+03	1.9681E+03	4.7303E+03	2.0698E+03	1.2519E+01	Trusted
18	Ţ	0.0000E+00	5.6000E+03	5.6000E+03	5.6000E+03	0.0000E+00	5.6000E+03	0.0000E+00	1.5620E+03	8.0297E+02	3.4034E+03	2.2823E+03	5.3337E+03	2.2906E+03	3.1521E+03	3.6381E+03	1.1913E+01	Trusted
19	Ţ	0.0000E+00	5.6000E+03	5.6000E+03	0.0000E+00	5.6000E+03	5.6000E+03	0.0000E+00	5.6000E+03	0.0000E+00	4.9660E+02	4.7082E+03	2.0444E+03	5.4958E+03	5.2084E+03	2.2667E+03	1.2096E+01	Trusted
20	Ţ	4.2637E+03	7.4433E+02	3.7845E+03	5.1766E+03	1.4422E+03	1.7477E+03	1.6020E+03	3.1490E+03	5.5645E+03	2.6066E+01	5.3175E+03	4.9466E+03	4.0502E+03	5.3681E+03	5.3566E+03	1.1456E+01	Trusted
21	Ţ	0.0000E+00	1.1391E+03	4.2192E+03	4.3944E+03	1.2890E+03	8.2761E+02	5.2429E+03	5.3858E+03	1.0399E+03	3.6200E+02	5.5740E+03	3.8739E+03	4.3523E+03	5.3952E+03	4.6269E+03	1.3221E+01	Trusted
22	Ţ	4.9683E+02	1.9493E+02	4.2015E+03	4.3015E+03	3.6488E+03	5.5695E+03	2.6355E+03	1.6130E+03	2.3253E+03	3.1137E+03	5.4944E+03	3.5361E+03	1.1340E+03	3.5613E+03	3.0992E+03	1.1264E+01	Trusted
23	Ę	4.1152E+03	2.2154E+03	1.8754E+03	5.4268E+03	3.3724E+03	5.1700E+03	1.4986E+03	5.1262E+03	8.8915E+02	1.7154E+03	4.2128E+03	4.8479E+03	3.3188E+03	4.2995E+03	8.3776E+02	9.9243E+00	Trusted
24	æ	2.3669E+02	4.6320E+03	2.7834E+03	5.0834E+03	5.0080E+03	5.4309E+03	2.1502E+03	3.2833E+00	2.4715E+02	2.1734E+02	4.8086E+03	4.4932E+03	4.5782E+03	4.8170E+03	4.4418E+03	1.1267E+01	Trusted

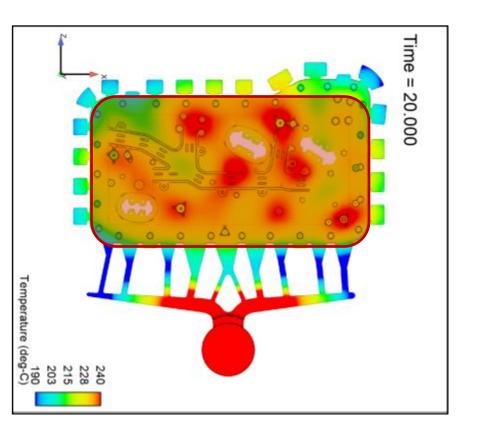
Best Result: output 10 °C

Initial Result: output 12.3 °C



Initial Result: output 12.3 °C

Best Result:



Idea to improve Optimization:

To have as new statistics output from Flow3d / Flowsight computed into all sampling volume (like average temperature, standard deviation etc..) instead of punctual control gived by probes

Conclusions

•Automation of design-simulation-interpretation-correction loop

 \rightarrow saving of design time

•The choose of correct outputs is crucial

→ more output from Flow3d / Flowsight could help

•Greater is the number of simulation, best will be the result

 \rightarrow computation time

•More complete is the model, more reliable will be the result

 \rightarrow computation time

THANK YOU

Daniele Grassivaro – daniele.grassivaro@formstampi.it

Form Srl – www.formstampi.it

www.improveit-software.com